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ABSTRACT

A heterogeneous anisotropic model for notched fiber composites which
was developed earlier by the authors ig extended to derive relation-
ships between the critical stress intensity factors of unidirectional
fiber composites having different reinforcement angles. Under certain
specified restrictions and given the critical stress intensity factor
for one reinforcement angle, these relationships enable the calculation

of the critical stress intensity factor for all reinforcement angles

which exhibit the same mode of fracture.




INTRODUCTION

The purpose of this report is to describe the derivation of an
expression relating the critical stress intensity factors of unidirec-
tional composites having the same constitutents but different fiber
reinforcement angles. The analysis is based on a crack-tip stress
analysis model for unidirectional fiber composites by Kousiounelos and
Williams+ and assumes a brittle fracture criterion. For completeness
of this report, the model assumptions and boundary conditions will be
repeated here. Other fracture criteria can be used in the model to
obtain a similar final expression which is valid only for composites
which display the same general type of matrix fracture. We assume that

brittie matrix fracture will occur when the maximum principal stress

reaches a critical stress, regardless of the magnitude of the other

principal stresses.

1..

P.N. Kousiounelos and J.H. Williams, Jr., '"Heterogeneous Anisotropic
Model for Notched Fiber Composites", To appear in Fibre Science and
Technology.
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MODEL ASSUMPTIONS AND BOUNDARY CONDITIONS

The rodel for the specimen geometry, coordinates, and loading

is shown in Fig. 1 and is based on the following set of assumptions:

1) The overall macroscopic behavior of the heterogeneous
fiber composite is the same as the overall macroscopic
behavior of the homogeneous orthotropic medium with
appropriate equivalent elastic parameters.

2) The unidirectional fiber composite may be composed of
thin parallel layers of fiber, matrix and coating
material. See Fig. 2. (In this analysis, we shall
éésume without loss of utility that the coating material
is not present.)

3) The extensional strain in the fiber direction near the
erack tip is the same for the constituenis of the hetero-
geneous strip model and the homogeneous orthotropic body
at the same location.

4) The interfacial normal and shear stress components for
the heterogeneous strip model (Fig. 3) are the same as
the respective stress components predicted by the homo-
geneous orthotropic body at the same location. (It is
important to note that these stresses are equivalent to
the through-thickness—averaged stresses in the actual com-

posite. A subsequent model which we are developing will




-
take into account through-thickness differences in the
matrix and fiber stresses.)

5) The boundary cogditions at the ends, y = i_%—(Fig. 1)
are uniform extensional strain €, in the y-direction

1

and zero shear strain in the xy plane. All other bound-

aries are stress free.

EQUIVALENT STRESS BOUNDARY CONDITIONS

It is convenient to express the specified strain boundary
conditions in terms of equivalent stress boundary conditions. In
the xy-coordinate system, the plane stress (0z = 0) constitutive

relations are

x 11 12 16 b4

€ = a,, a,. a.. o (1)
Yy <l Le 40 y

Yxy 31 %2 %66 Ty

"where € and Y are the normal and shear strains, respectively, and O

and T are the normal and shear stresses, respectively. The ai constants

3

are given in the Appendix.
In order to satisfy the specified strain boundary conditions
on a general orthotropic body, as shown in Fig. 4, a combination of

norma2l stress (oi) and shear stress (Tiz) must be applied along the

edges y = + L These stresses follow directly from the specified

2.

strain boundary conditions and equation (1) as
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E a - _ZQ

1 22 ace

and
T,'g_‘ze 1 g .
12 a 2 1
66 a
11 22 3ce

The normal stress Ol is a reference stress and is the stress
required to produce the imposed extensional strain € in a
unidirectional 0° composite. Thus, o is simply (E1 61) where

El is the extensional elastic modulus. (See Appendix.)

(2)

(3)
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- CRACK-TIP STRESS AND STRAIN FIELDS

— Wy U W e .. -y ey - _— —y L |

The crack-tip stress field in a homogeneous anisotropic

body subjected to the boundary stresses o and 11, as shown in

-Fig. 4 1s

5 ,k(g) °1’/’?5Re_‘ 1 (”1_”2 )
)" l“l -y N5yt oz |
. | @)
";2 i ( 1 ( 1 1\ )]
+ I Re , i 35)‘
(2mr) 1”1 THp N\ ‘J

T, vna ’ 1 Hy u, ’
(27nr) L0 Wy \7y z, ’

ty o "
P.C. Paris and G.C. Sih, "“Stress Analysis of Cracks", ASTM STP 381 1965.
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where Re denotes the real part of a complex funct;on, r and ¢ are
the polar coardinates, and k(%) is a specimen correction factor
depending on the ratio of the crack length a to the specimen width

2b. (Refer to Fig. 1.) The M, are the roots of the equation

4 \ 3 2
allu -2316u + (2 312+a66)u. -2826u+322 -VO
;nd the z, are defined by

2 = (cos ¢ + My sin ¢)&.

The stress field of the homogeneous orthotropic composite

with respect to the axes of elastic symmetry (x'y') can be computed

—

from equations (4) by a simple stress transformation. The corresponding

strain field is

\Y
1 12
€E W =50, ~-—=-0
x' E, “x! E, y'
\Y
12
= — J - —
y' TE %y E, x' )
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Using assumptions 3 and 4 and the material properties, the stresses in

the composite constituents, along the fiber direction, are obtained as

6. ,=E.€ ,+V

fy' £y £9%!

(6)

c ,=Ee ,+vo_,
my my mx',

where ny, and omy' are the normal stresses in the fiber and matrix along

the fiber direction, respectively; Ef and Em are the fiber and matrix

elastic moduli, respectively; and vf and vm are the Poisson's ratios

for the fiber and matrix, respectively.

RELATION OF CRITICAL STRESS INTENSITY FACTORS FOR DIFFERENT
REINFORCEMENT ANGLES '

Equations (4) may be rewritten as

Ky
o =—+4— *c¢c*F
x r%
.0'=-5—°ch 7
y l}i y 7
K
1
T =— s¢c*F
xy % xy

where

i
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P oeg |1 <”1_“2>_326 1 .<1 !
y e |u,-u % % a .. U~ % %

Y12 Nz, g 66 "17M2 |z, z,

F oo u1u2'<1 } 1)_ %26 1 .<“1 )

Xy e |u,-u L 5 a T Y L

. P12 \z P g, 66 M2 Azt 2,

The stress field in eqns (7) may be transformed to the x'y' axes, where

the relative orientation of xy and x'y' is indicated in Fig. 4, as

0,'=—;E°C'Gx,

S A S . _ (8)

where
—lr n\_‘__/nl\ ~ve - .\1
Gx" “_‘i L<Fx+Fy) + (Fx-ry/ cos(26) - érxy Sln(ZU)J
1 r ., . -
'Gy' = E-L(FX+FY)'_ (Fx-Fy) cos(28) + ZFx sin(ZB)J
) |
G*vyt =2 [(Fx Fy sin(28) + 2F__ cos(20) |.
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The se;ond of eqns.(5) may be used to eliminate Ey' from eqns. (6).
Then, by substituting eqns.(8) into the resulting expfession,vthe stresses

in the fiber and the matrix along the fiber direction become

KI
o '=——'C'H
fy' e £ » |
. : €))
K
o mLecon
y r m
where
E E
f f
H=(v - ==V )G,+——G.
f f El 12/ "x El y
Em Em ’
Hm’(vm'E—lvlz) G, . +EIGY' .

In accordance with assumption 4 of the model formulation, the

principal stress in the matrix is given by

O o + 0. CA ox,“ \ 5
=y X Sy X
%n prin 2 + 2 + Tx'y' : (10)

" Substitution of eqns. (8) and (9) into eqn.(10) gives

—_I-. L ]
m prin r% ¢ R (11)
where
H +G_, H-G,)z
m pd m X 2 Y
= + —
Rm 2 < 2 + Gx'y'
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similarly the principal stress in the fiber is

Gf prin = < £ (12)

where

H_+ G, H, - G- \? Y
Rf:.-f___‘_x—- + <_§.._._’i_) +G2, . .

1f for each fiber orientation of the set of unidirectional com-
posites under consideration there is a common fracture mode, namely brittle
matrix fracture, then in accordance with the assumed fracture criterion,
fracture will initiate in each composite of the same material at the
same critical value of Gm prin’ This critical value of om prin is assumed

to occur within a damage-zone radius Tym which is analogous to a plastic-

zone radius in metals. At this point, r, will not be discussed except

Ym
to remark that r, must be much less than a in accordance with the fore-
going use of LEFM. The equivalence of the critical principal matrix

’ r

stresses tay be written as

[(o“‘ P‘i“)ei] er [("m prin )ej] or (13)

where 8i and 0j represent angles for which the above restrictions hold.

By eqn.(11), eqn.(13) may be expressed ‘as

X A
(—-};-c-n =<EI,—-C-R> : (14)
r B/oi ler r2 n 03 |er
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If 1 and j also represent different specimens and if they possess the

same geometric configuration, eqn. (14) reduces to

’ K
< :I . Rm> = ( %I . Rm> . (15)
Tym fijer Bj |cr

Y

Furthermore, if (er)Gi = (nﬁm) 0§ ° eqn. (15) becomes

K R
1 m,.
61 8
—) = (=21}, (16)
KI R.m .
8 /ex 0i
KI may be considered as an experimentally determined critical stress
01 - -~
intensity factor. Then, KI represents a theoretically determinable
0j :
critical stress intensity factor for any other angle of the composite
for which the same mode of fracture prevails. The R_ are functions
, : “ok

of the composite consituents and the stress analysis, and may be com-
puted indepently of the fracture properties of the composita, in accordance

“with the referencé on page 2 of this report.
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The coefficients a
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APPENDIX

ij

ij

CONSTITUTIVE COEFFICIENTS

for an orthotropic material at an angle

0 (Fig. 4) with respect to its axes of elastic symmetry are,

822 "

. .[A
12 E1

11 °

4 \V I
o + [Gl -2 12 sin29
12 1l

sin’0 [ 1 V12
+1e

12 E,

~

-2 ———] sinze

1 V12 1

2
+E—'+2E G]ine

2 1 12

\ /

E,

2 /
a .lg (sin26 _ cos"e) + 1 2 v12 )(
16 1 E2 G, E, ]

1 \

Pt

"
7 A ¥ 4 7\

4
c0326 + sén l
1
4
cosze + cgs 8
1
v
c0526 - 7%3
1

\
cosze - sinze)] sin 0 cos O

2 2 \Y
cos & sin"6 1,12 2, _ 2
_326 -Iz ( 3 -3 ) - (G 2 7 ) (coa 8 - sin e)I sin 0 cos ¢

1

2 12 1
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366'.4 €_+EL+2_EL%__(;L sinzecoszﬂ-i-c—l—'
: .1 2 1 12 12

a1 T %12 |

361~ %16

862 ~ %26

El’ E. are the composite elastic moduli along and perpendicular to the

2
fiber direction, respectively, \)12 is the composite Poisson's ratio

for loading along the fiber direction, and GlZ is the in-plane composite

shear modulus.
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Fig. 1 Single-edge notched specimen showing geometry, loading and
' crack-tip coordinates.
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Fig. 2 The heterogeneous composite strip model as co

the actual composite.
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Fig. 3 The stresses in the multilayered composite model.
(The subscripts M,C and F refer to the matrix, coating and
fiber, respectively.)

bt ot




L]

-18-

X’
G

b

— T

&

Fig. 4 General orthotropic body with x'y'-axes of elastic symmetry
at the angle 6 with respect to the system xy-axes.
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